Cari Artikel di Sini

Senin, 22 Juli 2013

MATERI MATEMATIKA KELAS 9 SMP/MTSn Bab 6 : Pola Bilangan, Barisan, dan Deret

Barisan Aritmatika

          (1) 3, 7, 11, 15, 19, ...
          (2) 30, 25, 20, 15, 10,... 
Perhatikan bahwa selisih di antara suku-sukunya selalu tetap. Barisan yang demikian itu disebut barisan aritmetika. Selisih itu disebut beda suku atau beda saja dan dilambangkan dengan c.
          Barisan (l) mempunyai beda, b = 4. Barisan ini disebut barisan aritmetika naik karena nilai suku-sukunya makin besar.
          Barisan (2) mempunyai beda, b = -5. Barisan ini disebut barisan aritmetika turun karena nilai suku-sukunya makin kecil.
Suatu barisan U1, U2, U3,....disebut barisan aritmetika jika selisih dua suku yang berurutan adalah tetap. Nilai Untuk menentukan suku ke-n dari barisan aritmetika. perhatikan kembali contoh barisan (l).
        3, 7, 11, 15, 19, ...
Misalkan U1, U2, U3 , .... adalah barisan aritmetika tersebut maka
       U1 = 3 =+ 4 (0)

       U2 = 7 = 3 + 4 = 3 + 4 (1)
       U= 11 = 3 + 4 + 4 = 3 + 4 (2)
            ....
       Un = 3 + 4(n-1) 
Secara umum, jika suku pertama (U1) = a dan beda suku yang berurutan adalah b maka dari rumus Un = 3 + 4(n - 1) diperoleh 3 adalah a dan 4 adalah b. Oleh sebab itu, suku ke-n dapat dirumuskan 
       Un = a + b(n-1) 
Barisan aritmetika yang mempunyai beda positif disebut barisan aritmetika naik, sedangkan jika bedanya negatif disebut barisan aritmetika turun. 
        U1, U2, U3, .......Un-1, Un disebut barisan aritmatika, jika
        U2 - U1 = U3 - U2 = .... = Un - Un-1 = konstanta 
Un = a + (n-1)b = bn + (a-b) → Fungsi linier dalam n


Deret Aritmatika

Seperti telah dibahas sebelumnya, deret adalah bentuk penjumlahan dari suku-suku pada sebuah barisan. Jika U1, U2, U3, ... barisan aritmetika. U1, U2, U3, ... adalah deret aritmetika.
Untuk mendapatkan jumlah n suku pertama dari deret aritmetika, perhatikan kembali deret yang dihasilkan barisan (l ).
      3 +7 + 1l + 15 + 19 + ...
Jika jumlah n suku pertama dinotasikan dengan.Smaka S dari deret di atas adalah : 
Gambar:58.jpg 
Perhatikan jumlah 5 suku pertama, S yang diperoleh. Angka 3 pada perhitungan tersebut berasal dari suku pertama, sedangkan l9 adalah suku ke-5. Oleh karena itu, jumlah suku ke-n adalah 
Gambar:59.jpg 
Jika nilai Un tidak diketahui, kita gunakan rumus Un, barisan aritmetika, yaitu Un = a + (n-1)b, sehingga jumlah n suku pertama adalah
Gambar:60.jpg 
jumlah n suku pertama dari suatu deret aritmetika yang suku pertamanya a dan beda b adalah
Gambar:61.jpg 
Untuk memudahkan perhitungan Sn suatu deret aritmetika, perhatikan hal-hal berikut. a. Jika diketahui suku pertama a dan beda b, gunakan rumus Gambar:62.jpg
b. Jika diketahui suku pertama dan suku ke-n,gunakan rumus 

















Gambar:63.jpg
SOAL LATIHAN
1.       Selisih dua bilangan asli adalah 36 dan bilangan kedua adalah lima kali bilangan pertama. Jika kedua bilangan itu berturut – turut membentuk  suku kelima dan suku kedua suatu barisan aritmetika maka tentukan suku ke sepuluh!
                Penyelesaian :
                *) y – x = 36  y = 36 + x      →             5x = 36 + x
                *) y= 5x                                                     4x = 36 x = 9  y = 45
                U5 = 9  a + 4b = 9                                         
                U2 = 45  a + b = 45   -                                         
                                        3b = -36
                                        b = – 12                     U10 = a + 9b
                                        a = 57                                = 57 – 108 = – 51
2.       Misalkan a1 + a2 + a+ a+ a+ a6 adalah suatu deret aritmetika yang berjumlah 75. Jika a2 = 8 maka tentukan a6 !
        a1 + a2 + a+ a+ a+ a6 = 75                                                        a2 = 8
        a + (a + b) + (a + 2b) + (a + 3b) + (a + 4b) + (a + 5b) = 75        a + b = 8
        6a + 15b = 75                                                                                   a = 8 – b
        2a + 5b = 25
        2(8 – b) + 5b = 25
        16 + 3b = 25  b = 3  a = 5  a6 = a + 5b = 5 + 15 = 20 
3.       1 – 3 + 5 + 7 – 9 + 11 + 13 – 15 + 17 + 19 – 21 + ….. + 193 – 195 + 197 = ?
  = 1–3+(5+7)–9+(11+13)–15+(17+19)–21+ …..–189+(191+ 193)–195+197
  = 1–3+  12   –9+   24    – 15+    36    – 21+….. – 189 +      384   – 195 + 197
  = 1 + 197 + (12 + 24 + 36 + … + 384) – 3 – 9 – 15 – ……. – 195
  = 198 + 16(12 + 384) – 33/2(3 + 195)
  = 198 + 6336 – 3267 = 3267           
4.       Jika bilangan ganjil dikelompokkan seperti berikut :
        kelompok 1        : {1},
        kelompok 2        : {3,5},
        kelompok 3        : {7,9,11},
        kelompok 4        : {13,15,17,19}, …
        dst
        maka berapakah bilangan pertama dari kelompok ke-100 ?
        kelompok 1        : {1}                        = 12 – 0
        kelompok 2        : {3,5}                    = 22 – 1
        kelompok 3        : {7,9,11}              = 32 – 2  
        kelompok 4        : {13,15,17,19}    = 42 – 3
        .
        .              
        Kelompok 100   :                               = 1002 – 99 = 10.000 – 99 = 9.901   
       
5.   Tiga buah bilangan positif membentuk barisan aritmetika dengan beda 16. Jika bilangan terkecil ditambah 10 dan bilangan terbesar dikurangi 7, maka diperoleh barisan geometri. Tentukan jumlah ketiga bilangan tersebut !
                Misalkan bilangan itu : a – 16, a , a + 16
                (a + 16 – 7 ) : a = a : (a – 16 + 10)
                a2 = (a + 9)(a – 6)
                a2 = a2 + 3a – 54
                3a = 54  a = 18
                Sehingga jumlah 3 bilangan itu = 2 + 18 + 34 = 54 
6.  Jika jumlah sepuluh suku pertama suatu deret aritmetika adalah – 110 dan jumlah dua suku berturut-turut berikutnya adalah 2 maka tentukan jumlah 2 suku pertama !
                S10 = 5(2a + 9b)                         U11 + U12 = 2                    2a + 9b = – 22
                 – 110 = 5(2a + 9b)          a + 10b + a+ 11b =2                      2a + 21b =    2 -
– 22 = 2a + 9b         2a + 21b = 2                   12b = 24                                                                                                                       b =2  a = – 20
                                     sehingga a + a + b = – 40  + 2 = – 38                         
7.       Jika a, b, c, d dan e membentuk barisan geometri dan a.b.c.d.e = 1.024 maka berapakah nilai c ?
                a.b.c.d.e = 1.024                                              
                a.ar.ar2.ar3.ar4 = 45                                           karena c merupakan suku ke-3 maka
                a5.r10 = 45                                                             c = ar2 = 4
                (ar2)5 = 45
                ar2 = 4
8.  Diketahui barisan bilangan bulat 3, x, y dan 18. Jika tiga bilangan pertama membentuk barisan geometri dan tiga bilangan terakhir membentuk barisan aritmetika. Maka tentukan x + y !
                y : x = x : 3                                                           18 – y = y – x
                x2 = 3y                                                                  2y = 18 + x  y = (18 + x)/2
                x2 = 3(18 + x)/2
                2x2 = 3(18 + x)                                                    sehingga : x + y = 6 + 12 = 18
                2x2 – 3x – 54 =0
                (2x + 9)(x – 6) = 0
                x = 6  y = 12  
9.     Diketahui  p, q dan r merupakan akar – akar persamaan suku banyak berderajat tiga. Jika p, q dan r membentuk barisan aritmetika, dengan suku ketiga tiga kali suku pertama dan jumlah dari ketiga akar  adalah  12 maka tentukan persamaan dari suku banyak tersebut !
                r – q = q – p                        r = 3p                                     p + q + r = 12
                2q = p + r                                                                          p + 2p + 3p = 12
                2q = p + 3p                                                                                      6p = 12
                2q = 4p                                                                                 p = 2 q = 4  r = 6
                q = 2p
                                                sehingga persamaan suku banyaknya : (x – 2)(x – 4)(x – 6) = 0
 10.   Pada suatu barisan geometri dengan r > 1, diketahui dua kali jumlah empat suku pertama adalah tiga kali jumlah dua suku genap pertama. Jika diantara suku – suku tersebut disisipkan empat bilangan, dengan cara : antara suku kedua dan ketiga disisipkan satu bilangan dan antara suku ketiga dan keempat disisipkan tiga buah bilangan maka akan terbentuk barisan aritmetika dengan beda r. Hitung jumlah dari bilangan yang disisipkan !
                2S4 = 3(U2 +U4)                                                                 
                2 a(r4 - 1)/(r - 1) = 3(ar + ar3)
                2a(r4 – 1) = 3ar(1 + r2)(r – 1)
                2(r2 + 1)(r – 1)(r + 1) = 3r(r2 +1)(r – 1)         x    = a + 2b = 2 + 4 = 6
                2r + 2 = 3r                                                     y    = a + 4b = 2 + 8 = 10
                r = 2                                                               z = a + 5b = 2 + 10 = 12     
           U1  U2  x U3 y z w U4                                         w =a+ 6b = 2 + 12 =14 +
                a    2a      4a          8a                                             x + y + z + w = 42
                b =2a – a
                     2 = a

MATERI MATEMATIKA KELAS 9 SMP/MTSn Bab 5 : Pangkat Tak Sebenarnya

Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu:

Kompetensi Dasar : 

  1. Mengidentifikasi sifat-sifat bilangan berpangkat dan bentuk akar 
  2. Melakukan operasi aljabar yang melibatkan bilangan berpangkat bulat dan bentuk akar
  3. Memecahkan masalah sederhanayang berkaitan dengan bilangan berpangkat dan bentuk akar


Daftar isi


Bilangan Bulat dengan Eksponen Bilangan Bulat Positif

Masih ingat bentuk berikut :
32 = 3 x 3
23 = 2 x 2 x 2
56 = 5 x 5 x 5 x 5 x 5 x 5 
Demikian seterusnya sehingga diperoleh bentuk umum sebagai berikut. 
Gambar:36.jpg 
Dengan a bilangan bulat dan n bilangan bulat positif Dari pengertian di atas akan diperoleh sifat-sifat berikut.

Sifat 1
an x an = am + n 
24 x 23 = (2 x 2 x 2 x 2 )x(2 x 2 x 2 )
           = 2 x 2 x 2 x 2 x 2 x 2 x 2
           = 27
           = 24+3 
Sifat 2
am : an = am - n, m > n
55 : 53 = (5 x 5 x 5 x 5 x 5) : (5 x 5 x 5)
           = 5 x 5
           = 52
           = 55 - 3 
Sifat 3
(am)n = am x n
(34)2 = 34 x 34
       = (3 x 3 x 3 x 3) x (3 x 3 x 3 x 3)
       = (3 x 3 x 3 x 3 x 3 x 3 x 3 x 3)
       = 38
       = 34 x 2

Sifat 4
(a x b)m = am x bm
(4 x 2)3 = (4 x 2) x (4 x 2) x (4 x 2)
           = (4 x 4 x 4) x (2 x 2 x 2)
           = 43 x 23 
Sifat 5
(a : b)m = am : bm
(6 : 3) 4 = (6 : 3) x (6 : 3) x (6 : 3) x (6 : 3)
            = (6 x 6 x 6 x 6) : (3 x 3 x 3 x 3)
            = 64 : 34


Bilangan Bulat dengan Eksponen Bilangan Bulat Negatif

Gambar:37.jpg 
Dari pola bilangan itu dapat disimpulkan bahwa 20 = 1 dan 2-n 1/2n , secara umum dapat ditulis :

Gambar:38.jpg 
Pecahan Berpangkat Bilangan Bulat
Kita telah mengetahui bahwa pecahan adalah bilangan dalam bentuk dengun a dan b bilangan bulat (b ≠ 0). Bagaimanakah jika pecahan dipangkatkan dengan bilangan bulat? Untuk menentukan hasil pecahan yang dipangkatkan dengan bilangan bulat, caranya sama dengan menentukan hasil bilangan bulat yang dipangkatkan dengan bilangan bulat. 
Contoh:
Tentukan hasil berikut ini! 
 (1/2)5
Jawab :
Gambar:39.jpg 

Bentuk Akar dan Bilangan Berpangkat Pecahan


Bilangan Rasional dan Irasional

Bilangan rasional adalah bilangan yang dapat dinyatakan dalam bentuk a/b dengan a, b bilangan bulat dan b ≠ 0. Bilangan rasional merupakan gabungan dari bilangan bulat, nol, dan pecahan. Contoh bilangan rasional adalah -5, -1/2, 0, 3, 3/4, dan 5/9.

Sebaliknya, bilangan irasional adalah bilangan yang tidak dapat dinyatakan dalam bentuka/b dengan a, b bilangan bulat dan b ≠ 0.
Contoh bilangan irasional adalah . Bilangan-bilangan tersebut, jika dihitung dengan kalkulator merupakan desimal yang tak berhenti atau bukan desimal yang berulang. Misalnya 

√2 = 1,414213562 .... Selanjutnya, gabungan anrara bilangan rasional dan irasional disebut bilangan real.


Bentuk Akar

Berdasarkan pembahasan sebelumnya, contoh bilangan irasional adalah √2 dan √5 . Bentuk seperti itu disebut bentuk akar. Dapatkah kalian menyebutkan contoh yang lain? 
Bentuk akar adalah akar dari suatu bilangan yang hasilnya bukan bilangan Rasional. 
Bentuk akar dapat disederhanakan menjadi perkalian dua buah akar pangkat bilangan dengan salah satu akar memenuhi definisi
√a2 = a jika a ≥ 0, dan –a jika a < 0 
Contoh :
Sederhanakan bentuk akar berikut √75
Jawab :
√75 = √25x3 = √25 x √3 = 5√3


Mengubah Bentuk Akar Menjadi Bilangan Berpangkat Pecahan dan Sebaliknya

Bentuk √a dengan a bilangan bulat tidak negatif disebut bentuk akar kuadrat dengan syarat tidak ada bilangan yang hasil kuadratnya sama dengan a. oleh karena itu √2,√3, √5, √10, √15 dan √19 merupakan bentuk akar kuadrat. Untuk selanjutnya, bentuk akar n√amdapat ditulis am/n (dibaca: a pangkat m per n). Bentuk am/n disebut bentuk pangkat pecahan.

contoh :
Gambar:40.jpg 

jawab :

Gambar:41.jpg 

Operasi Aljabar pada Bentuk Akar


Penjumlahan dan Pengurangan

Penjumlahan dan pengurangan pada bentuk akar dapat dilakukan jika memiliki suku-suku yang sejenis.

Gambar:42.jpg 
kesimpulan :
jika a, c = Rasional dan b ≥ 0, maka berlaku 

a√b + c√b = (a + c)√b

a√b - c√b = (a - c)√b


Perkalian dan Pembagian

Contoh :
Tentukan hasil operasi berikut :

Gambar:43.jpg 
jawab : 
Gambar:44.jpg 

Perpangkatan

Kalian tentu masih ingat bahwa (a^)" = a^'. Rumus tersebut juga berlaku pada operasi perpangkatan dari akar suatu bilangan.
Contoh:
Gambar:45.jpg 

Operasi Campuran

Dengan memanfaatkan sifat-sifat pada bilangan berpangkat, kalian akan lebih mudah menyelesaikan soal-soal operasi campuran pada bentuk akarnya. Sebelum melakukan operasi campuran, pahami urutan operasi hitung berikut.

  • Prioritas yang didahulukan pada operasi bilangan adalah bilangan-bilangan yang ada dalam tanda kurung.
  • Jika tidak ada tanda kurungnya maka
  1. pangkat dan akar sama kuat;
  2. kali dan bagi sama kuat;
  3. tambah dan kurang sama kuat, artinya mana yang lebih awal dikerjakan terlebih dahulu;
  4. kali dan bagi lebih kuat daripada tambah dan kurang, artinya kali dan bagi dikerjakan terlebih dahulu.
Contoh :

Gambar:46.jpg 

Merasionalkan Penyebut

Dalam perhitungan matematika, sering kita temukan pecahan dengan penyebut bentuk akar, misalnya Gambar:47.jpg 
Agar nilai pecahan tersebut lebih sederhana maka penyebutnya harus dirasionalkan terlebih dahulu. Artinya tidak ada bentuk akar pada penyebut suatu pecahan. Penyebut dari pecahan-pecahan yang akan dirasionalkan berturut-turut adalah Gambar:48.jpg 
Merasionalkan penyebut adalah mengubah pecahan dengan penyebut bilangan irasional menjadi pecahan dengan penyebut bilangan rasional.


Penyebut Berbentuk √b

Jika a dan b adalah bilangan rasional, serta √b adalah bentuk akar maka pecahan a/√bdapat dirasionalkan penyebutnya dengan cara mengalikan pecahan tersebut dengan√b/√b .
Gambar:49.jpg 

Contoh :
Sederhanakan pecahan berikut dengan merasionalkan penyebutnya!

Gambar:50.jpg 
jawab :

Gambar:51.jpg 

Penyebut Berbentuk (a+√b) atau (a+√b)

Jika pecahan-pecahan mempunyai penyebut berbentuk (a+√b) atau (a+√b) maka pecahan tersebut dapat dirasionalkan dengan cara mengalikan pembilang dan penyebutnya dengan sekawannya. Sekawan dari (a+√b) adalah (a+√b) adalah dan sebaliknya.
Bukti
Gambar:52.jpg 
Contoh : 
Rasionalkan penyebut pecahan berikut. 
Gambar:53.jpg 
jawab : 
Gambar:54.jpg 


Penyebut Berbentuk (√b+√d) atau (√b+√d)

Pecahan tersebut dapat dirasionalkan dengan mengalikan pembilang dan penyebutnya dengan bentuk akar sekawannya, yaitu sebagai berikut.
Gambar:55.jpg 
Contoh: 
Selesaikan soal berikut! 
Gambar:56.jpg 
Jawab : 
gambar:57.jpg